

Global Relay of Observatories Watching Transients Happen

GROWTH:

Global Relay of Observatories Watching Transients Happen Mansi M. Kasliwal California Institute of Technology

July 25, 2016

Thank you

सत्यगेव जयसे Department of Science and Technology Ministry of Science and Technology Government of India

+ Independent Support for Sweden, Israel and Germany

A Renaissance in Time Domain Astronomy

Imagine: ZTF will be 12x Faster! LSST will be 16x Deeper!

TDA in the LSST era

PTF: 4 x 10⁴ events/night ZTF: 3 x 10⁵ events/night LSST: 2 x 10⁶ events/night

Technical	develop algorithms & software for detection & classification			
Scientific	discover new transient & variable phenomena			
Organizational	organize collaborations and followup strategies with real data			

GROWTH builds a global community ready to contribute LSST time-domain science!

Global Relay of Observatories Watching Transients Happen

Organizational Chart

Beating Sunrise

- GROWTH Network: 1. Palomar Observatory Caltech (USA)
 - 2. Table Mountain Observatory Pomona College (USA)
 - 3. Mount Laguna Observatory San Diego State University (USA)
 - Gemini North Observatory NOAO (USA) - Mauna Kea
 - W. M. Keck Observatory Caltech (USA)
 - Murikabushi Observatory Tokyo Tech University (Japan)
 - Lulin One-meter Telescope National Central University (Taiwan)
 - 8. Himalayan Chandra Telescope Indian Institute of Astrophysics (India)
 - Giant Metrewave Radio Telescope NCRA (India)
 - IUCAA Girawali Observatory IUCAA (India)
 - 11. WISE Observatory Weizmann Institute (Israel)
 - 12. Stella Observatory Humboldt University (Germany)
 - 13. Nordic Optical Telescope Oskar Klein Centre (Sweden)
 - Swift Satellite (Ultraviolet and X-ray) NASA (USA)
 - 15. Expanded Very Large Array (Radio) NRAO (USA)
 - 16. Fenton Hill Observatory Los Alamos National Laboratory (USA)
 - 17. Discovery Channel Telescope University of Maryland/JSI (USA)
 - + University of Wisconsin-Milwaukee

Team Never Sleeps!

Global Relay of Observatories Watching Transients Happen

GR

ΤH

New Partner: UK

WELCOME

Dan Perley Matt Darnley Paolo Mazzali Iain Steele

GROWTH is growing!

GROWIH Global Relay of Observatories Watching Transients Happen

Powerhouse: Young Researchers

Postdoctoral Fellows

Name Home Institutions Ragnhild Lunnan Caltech, USA Eric Bellm Caltech, USA Carrie Nugent Caltech, USA Nadia Caltech, USA Blagorodnova David Cook Caltech, USA Thomas Kupfer Caltech, USA Ouanzhi Ye Caltech, USA Scott Adams Caltech, USA UWM, USA Angie van Sistine Branimir Sesar MPIA, Germany Roy Rupak University of Stockholm, Sweden Ulrich Feindt University of Stockholm, Sweden Rahman University of Stockholm, Sweden Amanullah Hidekazu Ishigakijma Observatory, NAOJ, Hanayama Japan Tokyo Institute of Technology, Yoshihiko Saito Japan Tokyo Institute of Technology, Ryosuke Itoh Japan Leo Singer NASA, USA

PhD Students

Name	Home Institution
YI Cao	Caltech, USA
Anna Ho	Caltech, USA
Hong Qi	UWM, USA
Javed Jana	IUCAA, India
Francesco Taddia	University of Stockholm, Sweden
Anders Nyholm	University of Stockholm, Sweden
EmirK	University of Stockholm, Sweden
Tanja Petrushevska	University of Stockholm, Sweden
Semeli Papadogiannakis	University of Stockholm, Sweden
Laura Hangard	University of Stockholm, Sweden
Raphael Ferretti	University of Stockholm, Sweden
Yutaro Tachibana	Tokyo Institute of Technology, Japan
Taketoshi Yoshil	Tokyo Institute of Technology, Japan
Taichi Fujiwara	Tokyo Institute of Technology, Japan
Shohel Harita	Tokyo Institute of Technology, Japan
Vutaro Muraki	Tokyo institute of Technology, Japan
Barak Zackay	Weizmann Institute of Science, Israel
Guy Nir	Weizmann Institute of Science, Israel
Tiara Hung	University of Maryland, USA
Vicki Toy	University of Maryland, USA

Grad/Postdoc Internships

5 graduate/postdoc internships

Ragnhild Lunnan (Caltech) → Oskar Klein Center, Sweden Christopher Fleming (Sweden) → Caltech, USA Monika Soraisam (Germany) → Caltech, USA Javed Rana (India) → Caltech & Univ. of Maryland, USA Jessica Sutter (University of Wyoming) → Caltech

Graduate/Postdoc Internships

iPTF M31 transient detection

Supernovae

Global Relay of Observatories Watching Transients Happen

Monica Soraisam

MAX-7145 GRIG - NELLACHART

Caltech

Caltech

Ragnhild Lunnan

Spectral Analysis of stripped envelope supernovae discovered by PTF and iPTF

Christoffer Fleming

UNIVERSITY ----- Caltech

Jessica Sutter

MARYLAND Caltech

Follow-up spectroscopy for Census of the Local Universe (CLU) galaxy survey

Nebular Spectroscopy of Superluminous

GROWTH Undergrad Internships

5 undergraduate summer internships awarded in 2016

Melanie Olaes (SDSU) → Eran Ofek (Weizmann Institute of Science, Israel Gabrielle Mehta (Pomona College) → Varun Bhalerao (IUCAA, India) + Bryan Penprase (Pomona College) Shreya Anand (Univ of Maryland) → Wen-Ping Chen (National Central University, Taiwan) Kit Chinnetti (Caltech) → Matt Darnley (Liverpool John Moores University, UK Atharva Patil (IUCAA, India) → Chow-Choong Ngeow (National Central University, Taiwan)

Undergraduate Internships 2016

Global Relay of Observatories Watching Transients Happen

Undergraduate Internships 2016

Global Relay of Observatories Watching Transients Happen

iPTF16bqy is my first little contribution to transient discoveries.

Previous Next

Independent discovery and spectroscopic classification of iPTF16bgy (ASASSN-16hf) as a Classical Nova in M31

ATel #9248; K. Chinetti (Caltech), M. J. Darnley (LJMU), M. M. Kasilveal (Caltech), P. Mazzali (LJMU), J. D. Neill (Caltech), S. C. William (Lancaster) on 15 Jul 2016; 18:59 UT Credential Certification: Matt Darniey (MJ.Darniey (Rijmu.ac.uk)

Subjects: Optical, Nova, Transient

У Iveet 💽 Recommend 6

We report the independent discovery of nova candidate iPTF16buy (ASASSN-16hf, ATel #9245) on 2016 July 12.44 UT with the intermediate Palomar Transient Factory. iPTF16bgy is located at RA 00:44:41.05. DEC +40:08:35.9 (J2000.0: consistent with the ASASSN position), and was not detected in images taken 2016 July 10.47 and earlier. Photometry of the transient with the Samuel Oschin 48-inch telescope is summarized in the table below:

fort et	(iT)		(111)m	PageIToole					
20104	Triy	12.44	e	18,76 > 0.65					
2816	Tely.	12.47	e .	17.85 ± 8.66					
2010	Tels	14.64		36.32 ± 9.06					
2010	July	11.41		18.71 ± 0.87					

We also obtained a pair of spectra with the SPRAT spectrograph (Plascik et al. 2014) on the 2m Liverpool Telescope (Steele et al. 2004) on 2016 July 14.12 and 15.07 UT. An additional spectrum was obtained with the SEDM spectrograph on the Palomar 60-in telescope on 2016 July 14. The spectra show Balmer (Ha-5) P Cygni profiles, consistent with the early optically thick phase of a classical nova eruption (the 'fireball'). The Hu P Cygni profiles indicate ejection velocities of 2300 ± 100 km/s. The spectra also show Fe II (nultiplets 42, 73, 74), Na I (5892 Å), and O I (7713 Å) emission lines, with hints of blue shifted absorption components. Clear evolution of the P Cygni profiles is evident between the spectra with the absorption features weakening and the emission strengthening as the ejecta expands. As such we conclude that iPTF16bqy is the early stage of an eruption of a classical nova in M31 and belongs to the Fe II taxonomic class.

Finally, we comment that the large distance of this nova from the center of M31 (4053" South and 1338" East of the center of M31; ATel #9245) is in itself noteworthy. The emission line centers and the luminosity of this nova are however, consistent with the nova belonging to M51.

This work is part of an international undergraduate internship supported by the NSF PIRE GROWTH program

I found a nova!

Courses

COMPLETED

Ay 3: Automating Discovering the Universe Offered at Caltech, Winter 2015

UPCOMING

Undergraduate major course To be offered at Univ of Maryland, Univ. of Winsconsin Milwaukee and Pomona College

Goal: Ramp up to six co-ordinated courses per semester by Year 5. Publish curriculum.

Lead: Bryan Penprase

Educators Workshop to co-develop curriculum

ACTIVE LEARNING

In Class Activities and Peer Learning Exercises Conceptual Questions Projects Using GROWTH data

FLIPPED Online

Tutorials for Common Topics Observational Astronomy Exercises Laboratory

LABORATORY

Experiments

PROJECT-based and RESEARCH

Shared Journal Article "case studies" Student Developed Reports and Research

Parallel Global Observational Astronomy Course - Possible Weekly Schedule

Week 1	Week 2	Week 3	Week 4	Weeks 5+6	Week 7	
Telescope Design, CCD detectors, Astronomical Coordinates	Astrometry Exercise (parallax or orbit determination)	Basic Photometry (measurement of HR diagram)	Time-Domain Photometry - light curve + periodogram	Submit Proposals for student projects + conduct observing	Presentations and writeups of student work	
<u> </u>	<u> </u>	<u> </u>		<u> </u>		
Begin Project (semester or quarter)	Students at multiple campuses share data	Professors share tutorials, and students pool data for photometry	Multiple student groups can provide 24-hour coverage of time- variable sources	Global student research community o share data analysis ti and telescope time	can ips	

GROWTH

Publications

e	Biheade Authors	Score Title	Dute	List of	of Links as Cont	i rol Help				
1	2016arXiv160605655C Cao, Yi; Kulkarii, S. R.; Gal-Yam, Avishay; Papadogiannakis, S.; Nugent, P. E.; Masci, Frank J.; Bue, Brian D.	1.000 SN2002es-like Supera	06/2016 ovae From Different Viewing Angles	Δ		X	<u>R</u>		<u>U</u>	
2	2016ApJ_824L_24K Kasliwal, M. M.; Cenko, S. B.; Singer, L. P.; Corsi, A.; Cao, Y.; Barlow, T.; Bhalerao, V.; Bellm, E.; Cook, D.; Duggan, G. E.; and 21 coanthors	1.000 iPTF Search for an Op	06/2016 tical Counterpart to Gravitational-wave	<u>A</u> Transie	EE nt GW1	<u>X</u> 50914	<u>R</u> <u>C</u>	<u>s</u> :	<u>U</u>	
3	2016ApJ_824_60 Ofek, E. O.; Cenko, S. B.; Shaviv, N. J.; Duggan, G.; Strotjohann, NL.; Rubin, A.; Kulkarni, S. R.; Gal-Yam, A.; Sullivan, M.; Cao, Y.; and 8 counthors	1.000 PTF13efv — An Outbu	06/2016 rst 500 Days Prior to the SNHunt 275 E	A plosie	E E 1 and Its	X Radiative Effi	R C ciency	<u>s</u>	<u>U</u>	
4	2016ApJ.,823.147C Cao, Yi; Johansson, J.; Nugent, Peter E.; Goobar, A.; Nordin, Jakob; Kulkurni, S. R.; Cenko, S. Bradley; Fox, Ori D.; Kasliwal, Mansi M.; Fremling, C.; and 7 coauthors.	1.000 Absence of Fast-movie	06/2016 ng Iron in an Intermediate Type Ia Super	A neva be	E E etween N	X Normal and Sup	R C per-Chand	<u>S</u> irasekhar	<u>u</u>	
5	2016MNRAS.458.2973P Prentice, S. J.; Mazzali, P. A.; Pian, E.; Gal-Yam, A.; Kulkarni, S. R.; Rubin, A.; Corsi, A.; Fremling, C.; Sollerman, J.; Yaron, O.; and 7 coarthers	1.000 The bolometric light o	05/2016 urves and physical parameters of strippe	<u>A</u> d-envel	E E ope supe	X ernovae	<u>R</u> <u>C</u>		<u>n</u>	
6	2016arXiv160505235L Lunnan, R.; Chomock, R.; Berger, E.; Milisavljevic, D.; Jones, D. O.; Rest, A.; Fong, W.; Fransson, C.; Margutti, R.; Drout, M. R.; and 20 coanthors	1.000 PS1-14bj: A Hydrogen	05/2016 i-Poor Superluminous Supernova With a	A Long I	Rise and	X Slow Decay	<u>R</u> C		<u>U</u>	
7	2016arXiv160502491T Taddia, F.; Fremling, C.; Sollerman, J.; Corsi, A.; Gal-Yam, A.; Karamehanetoglu, E.; Lunnan, R.; Bue, B.; Ergon, M.; Kasliwal, M.; and 2 counthurs	1.000 iPTF15dtg: a double-p	05/2016 eaked Type Ic Supernova from a massiv	A e proge	nitor	X	<u>C</u>		<u>u</u>	
8	2016arXiv160307333S Singer, L. P.: Chen, HY.; Holz, D. E.; Farr, W. M.; Price, L. R.; Raymond, V.; Cenko, S. B.; Gehrels, N.; Cannizzo, J.; Kasliwal, M. M.; and H0 courficen	1.000 Going the Distance: M	03/2016 apping Host Galaxies of LIGO and Virg	A o Sourc	es in Tr	X aree Dimension	<u>₿</u> <u>C</u> is Using L	ocal Co	U mography and Targete	d Follow-up
9	 <u>2016ApJ_820_33R</u> Rubin, Adam: Gal-Yam, Avishay: De Cia, Annalisa: Horesh, Assaf: Khazov, Danny; Ofek, Eran O.; Kulkana, S. R.; Arcavi, Iair; Manulis, Ilan; Yaron, Ofer, and 30 troathory 	1.000 Type II Supernova Ene	03/2016 ergetics and Comparison of Light Curves	A to She	E E ek-conli	X ₽ ing Models	RC	<u>s</u>	ΩĽ	
10	2016ascl.sofi02002B Bellm, Eric C.; Sesar, Branimir	1.000 рутаf-dbsp: Reduction	02/2016 pipeline for the Palomar Double Beam 5	A Spectro	E graph			1	<u>5 n</u>	
11	2016arXiv160208492A Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acemese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; and 1537 coauthors	1.000 Localization and broad	02/2016 Iband follow-up of the gravitational-way	A e transi	ient GW	X 150914	<u>R</u> C		<u>∎</u>	
12	2016ApJ_8183K Khazav, D.; Yaron, O.; Gal-Yam, A.; Manulis, I.; Rubin, A.; Kulkami, S. R.; Arcavi, I.; Kasliwal, M. M.; Ofek, E. O.; Cao, Y.; and 17 cuanthors	1.000 Flash Spectroscopy: E	02/2016 mission Lines from the Ionized Circums	<u>A</u> tellar N	EE Interial a	∑ around <10-day	<u>R</u> C cold Type	5 II Super	U movae	
13	2016arXiv160107368T Taddia, F.; Sollerman, J.; Fremling, C.; Migotto, K.; Gal-Yans, A.; Armen, S.; Duggan, G.; Ergon, M.; Filippenko, A. V.; Fransson, C.; and 10 counthors	1.000 Long-rising Type II su	01/2016 pernovae from PTF and CCCP	Δ		X	<u>R</u>		<u>U</u>	
14	2015arXiv151201303C Corsi, A.; Gal-Yam, A.; Kulkarni, S. R.; Frail, D. A.; Mazzali, P. A.; Cenko, S. B.; Kasliwal, M. M.; Cao, Y.; Horesh, A.; Palliyaguru, N.; and 8 counthors	1.000 Radio observations of	12/2015 a sample of broad-lined type Ic supernor	<u>A</u> vae disc	overed	X by PTF/iPTF: /	<u>R</u> A search f	or relativ	U istic explosions	
15	2015ApJ_814_108Y Yan, Lin; Quimby, R.; Ofek, E.; Gal-Yam, A.; Mazzali, P.; Perley, D.; Vreeswijk, P. M.; Leloadas, G.; D., Cin, A.; Musci, E.; and Zamundana.	1.000 Detection of Broad Ho	12/2015 I Emission Lines in the Late-time Spectr	A a of a P	E E lydroger	X D n-poor Superlu	<u>R</u> C minous St	<u>S N</u> upemova	<u>U</u>	

Updated from Kasliwal 2011 (PhDT)

Supernova Discoveries

GREWTH Global Relay of Observatories Watching Transients Happen

Connecting the type of star to its explosion

Young Type I: Yi Cao (PhDT) Young Type II: Adam Rubin (PhDT)

ated from Kasliwal 2011 (PhDT)

III. Dawn of Gravitational Wave Astronomy

The Gold Rush: Light from Gravitational Waves

Blue Emission: SPEED

Speed of Response Speed of Software Speed of Follow-Up

Coarse GW Localizations

e.g. Kasliwal & Nissanke 2014, Singer et al. 2014

Palomar *(Zwicky)* Transient Factory

Oschin 48" Telescope Mayer 60" Telescope Hale 200" Telescope

GW150914: All candidates classified in 2 hours!

Kasliwal et al. 2016a

IV. Asteroids

iPTF discovery of NEA 2014 JG55

- Rapid response of fast-moving asteroids before they are lost
- Improve orbit solutions of possible impactors
- Fast characterization of compositional properties
- Monitoring mass loss events (i.e. active asteroids)
- Search for binaries, tumblers and erratic rotators (super-fast/slow)

This 10m asteroid came within ¼ of the earth-moon distance! The streak became brighter by 1 mag and faster by 50% in 2 hours.

ZTF should be 20x better. GROWTH follow-up is key.

Thank you

सत्यगेव जयसे Department of Science and Technology Ministry of Science and Technology Government of India

+ Independent Support for Sweden, Israel and Germany

TH Global Relay of Observatories Watching Transients Happen

GROWTH Team

SENIOR INVESTIGATORS

Mansi Kasliwal

PRINCIPAL INVESTIGATOR Assistant Professor (Caltech, USA)

⊠ mansi@astro.caltech.edu 🖌 Homepage

Thomas Prince Professor of Physics (Caltech, USA)

⊠ prince@srl.caltech.edu 🖌 Homepage

Shriniyas Kulkarni Professor of Astronomy & Planetary Science (Caltech, USA)

🖂 srk@astro.caltech.edu 🖀 Homepage

Lin Yan Associate Research Astronomer (Caltech, USA)

🖂 lyan@ipac.caltech.edu 😭 Homepage

Bryan Penprase

Professor of Astronomy (Pomona College, USA and Yale-NUS Teaching and Learning Center, Singapore)

⊠ bryan.penprase@yale-nus.edu.sg Homepage

Professor (Stockholm University, Sweden)

⊠ ariel@fysik.su.se A Homepage

Eran Ofek

Arye Dissentshik career development chair (Weizmann Institute of Science, Israel)

🖂 eran.ofek@weizmann.ac.il A Homepage

Marek Kowalski

Leading Scientist (DESY, Humbolt University of Berlin, Germany)

⊠ marek,kowalski@desy.de A Homepage

Nobuyuki Kawai

Professor of Astronomy and Astrophysics (Tokyo

Institute of Technology, Japan) nkawal@phys.titech.ac.jp

Homepage

Gadiyara C Anupama Professor (Indian Institute of Astrophysics, India)

🗹 gca@iiap.res.in A Homepage

ЪН Global Relay of Observatories Watching Transients Happen

GROWTH Team cont...

Robert Quimby

Associate Professor (San Diego State University, USA)

☑ rquimby@mail.sdsu.edu 🖀 Homepage

David Kaplan Associate Professor (University of Wisconsin-Milwaukee, USA)

Przemek Wozniak Los Alamos National Laboratory, USA

🖾 wozniak@lanl.gov A Homepage

Chow-Choong Ngeow

Assistant Professor (National Central University, Taiwan) ⊠ cngeow@gm.astro.ncu.edu.tw # Homepage

Varun Bhalerao

Faculty Fellow (IUCAA, India)

🖂 varunb@iucaa.in A Homepage

Stuart Vogel

Professor of Radio Astronomy (University of Maryland, College Park, USA)

⊠ vogel@astro.umd.edu # Homepage

Brad Cenko

Research Astrophysicist (NASA) and Asst Professor (University of Maryland, College Park, USA)

⊠ brad.cenko@nasa.gov A Homepage

Melissa Hayes-Gehrke

University of Maryland, College Park, USA

🖂 mhayesge@umd.edu A Homepage

SPIRITS:

SPitzer InfraRed Intensive Transients Survey

Cycles 10-12 1130 hours of Spitzer mid-IR 190 Galaxies x 10 epochs (PI Kasliwal)

Every Year:

110 nights of near-IR imaging66 nights of optical imaging33 nights of spectroscopy

147 transients (35 SPRITEs) 1948 variables/year

Kasliwal et al. 2016b, ApJ, submitted

A New Infrared Discovery Engine?

Neutron Star + Black Hole

and then there is light!

Blue Flash (~hours) & Red Transient (~days)

e.g. Li & Paczynski 1998, Kulkarni 2005, Roberts et al. 2011, Nakar & Piran 2011, Barnes et al. 2013, Kasen 2013, Grossman et al. 2013

GROWTH II. Infant Type Ia SNe

Days since Explosion

Statistics

Cao et al. 2016b

Statistics

Khazov et al. 2016, Rubin et al. 2016

