Fast and Furious: Analysis of the Luminous and Rapidly-Evolving Type Ic-BL Supernova iPTF16asu

Lindsey Whitesides¹, Ragnhild Lunnan¹, Mansi M. Kasliwal², Alessandra Corsi², S. Bradley Cenko³,⁴, iPTF Transient Team

1. Division of Physics, Mathematics, and Astronomy, California Institute of Technology
2. Department of Physics and Astronomy, Texas Tech University
3. NASA Goddard Space Flight Center and Department of Physics and Astronomy, University of Maryland, College Park

Assessing the Scene: Data and context of iPTF16asu

Context

- **PTF16asu Light Curve**
 - Rest-frame rise time (t_r): 4.0 days!
 - Peak luminosity (M_L): -20.4 mag

Photometry

- **g Band Light Curve**
 - More luminous and rapidly-evolving than other similar transients.

Spectroscopy

- **Superluminous**
 - Featureless, blue continuum, similar to [3].
 - From host galaxy narrow emission lines: $z = 0.1874$

Investigating the Explosion: Analysis of physical properties

Bolometric Light Curve & Radiated Energy

- **Total Radiated Energy:** $4.0 \times 10^{50} \pm 6.3 \times 10^{50}$ ergs
- **Peak Bolometric Luminosity:** $3.4 \times 10^{50} \pm 2.8 \times 10^{50}$ ergs/s

Temperature & Radius

- **Peak Parameters:**
 - $T = 10820 \pm 520$ K
 - $R = 2.6 \times 10^{15} \pm 1.9 \times 10^{14}$ cm

Velocity

- **Magnetar**
 - Rapidly-spinning neutron star generates extreme magnetic fields.
 - Energy is released to the supernova as magnetar spins down.

- **Magnetar Energy**:
 - $1/P^2$

- **Spin-down Time**:
 - $\propto P / B^2$

- **Magnetic Field**:
 - 6.5×10^{14} G

- **Ejecta Mass**:
 - $0.13 M_\odot$

Unraveling the Mystery: Testing various explosion models

Nickel-56 Decay?

- Normal Type Ic supernovae powered by radioactive decay of 56Ni:
 - 56Ni \rightarrow 56Co $+$ γ
 - 56Co \rightarrow 56Fe $+$ γ

- **Ni Decay Powered Light Curve**
 - **Not feasible**

Magnetar?

- Rapidly-spinning neutron star generates extreme magnetic fields.
 - Energy is released to the supernova as magnetar spins down.

- **Magnetar Powered Light Curve**
 - **Possible**

Off-Axis GRB?

- Velocities comparable to other SN Ic-BL + GRB.
- Featureless blue spectra at early times.
- No reported GRB consistent with location and explosion time.
- No radio detection with VLA.
- No X-ray detection with Swift/XRT.

Shock Cooling?

- Early blue spectra, luminous, and short-lived.
- Peak radius of $4 \times 10^4 R_\odot$ is larger than any star, requiring circumstellar material.

References